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Abstract
We derive, for a bistochastic strictly contractive quantum channel on a matrix
algebra, a relation between the contraction rate and the rate of entropy
production. We also sketch some applications of our result to the statistical
physics of irreversible processes and to quantum information processing.

PACS numbers: 03.65.Yz, 03.67.−a, 05.30.−d

Let A be the algebra of observables (say, a C*-algebra with identity), associated with a
quantum-mechanical system �. A general evolution of � is described, in the Heisenberg
picture, by a map T : A → A which is (i) unital: T (11) = 11, and (ii) completely positive: for
any nonnegative integer n, the map T ⊗ id : A⊗Mn → A⊗Mn, where Mn is the algebra of
n×n complex matrices, sends positive operators to positive operators [1]. We shall henceforth
refer to such maps as (quantum) channels [2]. If � is an N-level system, then its algebra of
observables is isomorphic to MN , which is exclusively the case we shall consider in this letter.
A celebrated result of Kraus [1] then says that, for any channel T, there exists a collection of at
most N2 operators Vi ∈ MN , which we shall call the Kraus operators associated with T, such
that (i) T (A) = ∑

i V
∗
i AVi , and (ii)

∑
i V

∗
i Vi = 11. It is now easy to see that T (A∗) = T (A)∗

for all A ∈ MN , i.e., any channel maps Hermitian operators to Hermitian operators.
Given a channel T, the corresponding Schrödinger-picture channel T̂ is defined via the

duality

tr[T̂ (A)B] = tr[AT (B)]

whence it follows that T̂ is a completely positive map which preserves the trace, i.e.,
trT̂ (A) = trA for all A ∈ MN . In other words, T̂ maps the set DN ofN ×N density matrices
into itself. Furthermore, in terms of the Kraus operators Vi , we have T̂ (A) = ∑

i ViAV
∗
i , so

that T̂ (A∗) = T̂ (A)∗ as well.
The set {T n}n∈N is a discrete-time quantum-dynamical semigroup generated by T, i.e.,

T nT m = T n+m and we take T 0 ≡ id (the identity channel). It is easy to show that, for any
channel T, there exists at least one density operator ρ such that T̂ (ρ) = ρ [3]. A question of
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clear physical importance is to determine whether the dynamics generated by T is relaxing [3],
i.e., whether there exists a density operator ρ such that, for any density operator σ , the orbit
{T̂ n(σ )} converges to ρ in the trace norm ‖A‖1:=tr(A∗A)1/2.

One way to show that a dynamics is relaxing relies on the so-called Liapunov’s direct
method [4]. Let X be a compact separable space, and let ϕ : X → X be a continuous map,
such that

(i) ϕ has a unique fixed point x0 ∈ X , and
(ii) there exists a Liapunov function for ϕ, i.e., a continuous functional S on X such that, for

all x ∈ X , S[ϕ(x)] � S(x), where equality holds if and only if x ≡ x0.

Then, for any x ∈ X , the sequence {ϕn(x)} converges to x0.
Let T be a bistochastic channel, i.e., one for which T (11) = T̂ (11) = 11. If we treat MN

as a Hilbert space with the Hilbert–Schmidt inner product, 〈A,B〉 := tr(A∗B), then an easy
calculation shows that the Schrödinger-picture channel T̂ is precisely the adjoint of T with
respect to 〈·, ·〉, i.e., 〈A, T (B)〉 = 〈T̂ (A), B〉 for all A,B ∈ Mn. The composite map T ◦ T̂
(which we shall write henceforth as T T̂ ) is also a bistochastic channel, which is, furthermore,
a Hermitian operator with respect to 〈·, ·〉. In [5], Streater proved the following result.

Theorem 1. Let T : MN → MN be a bistochastic channel. Suppose that T̂ is ergodic with a
spectral gap γ ∈ [0, 1), i.e., (i) up to a scalar multiple, the identity matrix 11 is the only fixed
point of T̂ in all of MN , and (ii) the spectrum of T T̂ is contained in the set [0, 1 − γ ] ∪ {1}.
Then, for any σ ∈ DN , we have

S[T̂ (σ )] − S(σ) � γ

2
‖σ −N−111‖2

2 (1)

where S(σ):= −tr(σ ln σ) is the von Neumann entropy of σ and ‖A‖2 := [tr(A∗A)]1/2 is the
Hilbert–Schmidt norm of A.

In other words, if a bistochastic channel T̂ is ergodic, then the dynamics generated by T
is relaxing by Liapunov’s theorem1. Furthermore, the relaxation process is accompanied by
entropy production at a rate controlled by the spectral gap.

Now we have an interesting ‘inverse’ problem. Consider a bistochastic channel T on
MN with T̂ strictly contractive [6]. That is, T̂ is uniformly continuous on DN (in the
trace-norm topology) with Lipschitz constant C ∈ [0, 1): for any pair σ, σ ′ ∈ DN , we have
‖T̂ (σ ) − T̂ (σ ′)‖1 � C‖σ − σ ′‖1. Then by the contraction mapping principle [7], N−111
is the only density matrix left invariant by T̂ , and furthermore ‖T̂ (σ ) − N−111‖1 → 0 as
n → ∞ for any σ ∈ DN , i.e., the dynamics generated by T is relaxing. The question is,
does the entropy-gain estimate (1) hold, and, if so, how does the spectral gap γ depend on the
contraction rate C?

This problem was motivated in the first place by the following observation. In the case of
M2, the action of a bistochastic strictly contractive channel T̂ can be given a direct geometric
interpretation. Recall that the density matrices in M2 are in a one-to-one correspondence with
the points of the closed unit ball in R

3. Then the image of D2 under a strictly contractive
channel T̂ with contraction rate C will be contained inside the closed ball of radius C, centred
at the origin [6], i.e., the image of D2 under T̂ will consist only of mixed states. This geometric
illustration suggests that the rate of entropy increase under T̂ must be related to the contraction
rate. Now even though in the case of MN with N � 3 we no longer have such a convenient

1 Endowing the set DN with the trace-norm topology takes care of all the continuity requirements imposed by
Liapunov’s theorem.
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geometric illustration, nevertheless it seems plausible that the rate of entropy production under
a bistochastic strictly contractive channel would still be controlled by the contraction rate.

Indeed it turns out that the contraction rate is related to the rate of entropy production, as
stated in the following theorem.

Theorem 2. Let T be a bistochastic channel on MN , such that T̂ is strictly contractive with
rate C. Then T̂ is ergodic with spectral gap γ � 1 − C, so that, for any σ ∈ DN , we have

S[T̂ (σ )] − S(σ) � 1 − C

2
‖σ −N−111‖2

2. (2)

Proof. We first prove that T̂ is ergodic. As we noted before, T and T̂ are adjoints of each other
with respect to the Hilbert–Schmidt inner product. Using the Kadison–Schwarz inequality [8]

�(A∗A) � �(A)∗�(A)

for any channel� on a C*-algebra A, as well as the fact that

trT (A) = tr[T̂ (11)A] = trA

for any A ∈ MN , we find that

‖T (A)‖2
2 = tr[T (A)∗T (A)] � tr[T (A∗A)] = tr(A∗A) = ‖A‖2

2

and the same goes for T̂ . That is, both T and T̂ are contractions onMN (in the Hilbert–Schmidt
norm), hence their fixed-point sets coincide [9].

By hypothesis, T̂ leaves invariant the density matrix N−111, which is invertible. In this
case a theorem of Fannes, Nachtergaele, and Werner [10, 11] says that T (X) = X if and only
if ViX = XVi for all Vi , where Vi are the Kraus operators associated with T. It was shown in
[6] that if T̂ is strictly contractive, then the set of all X such that ViX = XVi for all Vi consists
precisely of multiples of the identity matrix. We see, therefore, that T (X) = X if and only if
X = χ11 for some χ ∈ C, whence it follows that T̂ (X) = X if and only if X is a multiple of
11. This proves ergodicity of T̂ .

Our next task is to establish the spectral gap estimate γ � 1 − C. Let X be a Hermitian
operator with trX = 0. In that case we can find a density operator ρ and a sufficiently small
number ε > 0 such that σ := ρ + εX is still a density operator [3].2 Then

‖T̂ (X)‖1 = (1/ε)‖T̂ (σ )− T̂ (ρ)‖1 � (C/ε)‖σ − ρ‖1 = C‖X‖1. (3)

Because one is a simple eigenvalue of both T and T̂ , it is also a simple eigenvalue of T T̂ . Hence
1−γ (which we may as well assume to belong to the spectrum of T T̂ ) is the largest eigenvalue
of the restriction of T T̂ to traceless matrices. Let Y be the corresponding eigenvector. Without
loss of generality we may choose Y to be Hermitian3. Then, using equation (3) and the fact
that ‖�(A)‖1 � ‖A‖1 for any trace-preserving completely positive map� [13], we may write

(1 − γ )‖Y‖1 = ‖T T̂ (Y )‖1 � ‖T̂ (Y )‖1 � C‖Y‖1

which yields the desired spectral gap estimate. The entropy gain bound (2) now follows from
theorem 1. �

2 This may be seen as a simple consequence of the following fact [12]. The set Dinv
N of all invertible N ×N density

matrices is a smooth manifold, where the tangent space at any ρ ∈ Dinv
N can be naturally identified with the set of

N ×N traceless Hermitian matrices.
3 Recall that 1 − γ is real, and T T̂ (A∗) = [T T̂ (A)]∗ for all A, which implies that Y + Y ∗ is also an eigenvector of
T T̂ with the same eigenvalue.
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Remark. Equation (3) can also be proved using the following finite-dimensional specialization
of a general result due to Ruskai [13]. If T : MN → MN is a channel, then

sup
A=A∗;trA=0

‖T̂ (A)‖1

‖A‖1
= 1

2
sup

ψ,φ∈C
N ;〈ψ |φ〉=0

‖T̂ (|ψ〉〈ψ| − |φ〉〈φ|)‖1. (4)

Because T̂ is strictly contractive, the right-hand side of (4) is bounded from above by C, and (3)
follows. The supremum on the left-hand side of (4) is the ‘Dobrushin contraction coefficient’,
studied extensively by Lesniewski and Ruskai [14] in connection with the contraction of
monotone Riemannian metrics on quantum state spaces under (duals of) quantum channels.

Note that in some cases the sharper estimate

S[T̂ (σ )] − S(σ) � 1 − C2

2
‖σ − N−111‖2

2 (5)

may be shown to hold. Consider, for instance, the case T = T̂ , so that the eigenvalues of T̂ are
all real. Let λ1, . . . , λL, L = N2 −1, be the eigenvalues of T̂ that are distinct from unity. Then
we claim that maxj |λj | � C, which can be proved via reductio ad absurdum. Suppose that
there exists some X (which we may take to be Hermitian) with trX = 0 such that T̂ (X) = λX

with |λ| > C. We may use the same trick as in the proof above to show that there exist two
density operators, σ and ρ, such that ‖T̂ (σ )− T̂ (ρ)‖1 > C‖σ −ρ‖1, which would contradict

the strict contractivity of T̂ . Because T T̂ = T̂
2
, we have 1 − γ = (maxj |λj |)2 � C2,

which confirms (5). Furthermore, using a theorem of King and Ruskai [15], the bound (5) can
be established for all bistochastic strictly contractive channels on M2, as well as for tensor
products of such channels.

The proof of this last assertion goes as follows. Let T be a channel on M2 such that T̂
is strictly contractive. Then T̂ is ergodic, the proof of which can be taken verbatim from the
proof of theorem 2. It is left to show that 1 − γ � C2. Any density operator in M2 can be
written as

ρ = 1

2


11 +

3∑
j=1

rj σj


 (6)

where the σj are the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

and the real numbers rj satisfy the condition r2
1 + r2

2 + r2
3 � 1 (this is precisely the one-to-one

correspondence between D2 and the closed unit ball in R
3). The King–Ruskai theorem [15]

asserts that, for any bistochastic channel T on M2, there exist unitariesU,V and real numbers
ξj , 1 � j � 3, with |ξj | � 1 such that, for any ρ ∈ D2,

T̂ (ρ) = U [T̂ diag(VρV
∗)]U∗

where the action of the map T̂ diag on the density operator (6) is given by

T̂ diag(ρ) = 1

2


11 +

3∑
j=1

ξj rjσj


 .

It can easily be shown [6] that if T̂ is strictly contractive, then C = maxj |ξj |.
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The parameters ξj are determined as follows [15]. Consider the orthonormal basis of M2,
generated by 11 and the Pauli matrices, with respect to which T̂ and T can be written as 4 × 4
matrices in the block-diagonal form

T̂ =
(

1 0
0 M

)
T =

(
1 0
0 Mt

)

where Mt denotes the transpose of M4. Then the absolute values of the parameters ξj are
precisely the singular values of M. This implies thatC = ‖M‖, where ‖M‖denotes the operator
norm (the largest singular value) of M. Consequently we get 1−γ = ‖M∗M‖ = ‖M‖2 ≡ C2,
which yields the entropy gain estimate (5). The argument for tensor products of bistochastic
channels on M2 runs along similar lines.

We remark that the results reported in this letter are consistent with the following theorem
[3]. Let T be a channel on MN with the property that T̂ has a unique fixed point ρ ∈ DN in
all of MN . Let λj be the eigenvalues of T̂ distinct from one, and let κ := maxj |λj |. Then
there exist a polynomial p and an N-dependent constant K such that, for any σ ∈ DN ,

‖T̂ n(σ )− ρ‖1 � Kp(n)κn. (7)

This shows that the dynamics generated by T is relaxing, ‖T̂ n(σ )− ρ‖1 → 0 as n → ∞, and
that the rate of convergence is controlled essentially by the eigenvalue of T̂ with the second
largest modulus. Now, if T is a bistochastic channel with T̂ strictly contractive, then it follows
from theorem 2 that κ � C1/2. But by virtue of strict contractivity we have

‖T̂ n(σ )−N−111‖1 ≡ ‖T̂ n(σ )− T̂
n
(N−111)‖1 � Cn‖σ −N−111‖1 <

2Cn/2(N − 1)

N

which has the form of (7). To obtain the last inequality we used the fact C < C1/2 for
0 � C < 1, as well as the fact that the set DN is compact and convex, so that the convex
functional ‖σ −N−111‖1 attains its supremum on an extreme point of DN , i.e., on a pure state.
In turn, a routine calculation shows [6] that, for any pure state σ , ‖σ−N−111‖1 = 2(N−1)/N .

Finally, a few comments are in order as to how our results come to bear upon (a) the
statistical physics of irreversible processes [4] and (b) quantum information processing [16].

In the first setting we are interested in a concise mathematical description of the approach
to equilibrium. We consider a quantum-mechanical system with the Hilbert space H,
dimH � ∞. We will use A to denote the algebra B(H) of all bounded linear operators
on H. Let H be the (possibly unbounded) Hamiltonian of the system, with the additional
requirement that the operator e−βH is trace-class for all positive real β. This means that the
Gibbs state exists for all positive inverse temperatures, and that each eigenvalue of H has finite
multiplicity. Let us write down the spectral decomposition H = ∑

E PE , where E are the
eigenvalues of H and PE are the corresponding eigenprojections. Then nE := dimPEH < ∞
for all E. Suppose we are given a channel T : A → A such that, for each E, the restriction
TE of T to the algebra AE :=PEAPE is bistochastic, i.e., T (PE) = T̂ (PE) = PE , so that
T (AE) ⊆ AE , and strictly contractive. Then theorem 2 says that, for each E, equation (2)
holds with some contraction rateCE . The Hilbert spaces PEH can be thought of as the energy
levels of H, and the states PE/nE as the corresponding microcanonical states. If in addition
we can show that C := supE CE < 1, then any normal state of the entire system will converge
towards the Gibbs state with the rate C.

In the framework of quantum information processing we are concerned mostly with
systems that have finite-dimensional Hilbert spaces. We may envision either a quantum
register that is used for storing information, or a quantum computer that processes information.
4 The 3 × 3 matrix M must be real because both T̂ and T map Hermitian operators to Hermitian operators.
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In both of these situations we are interested in stabilizing information against the effects of
decoherence. The decoherence mechanism is modelled by a channel. It was shown in [6] that
the set of strictly contractive channels on an algebra A is dense in the set of all channels on
A (here we are talking about the Schrödinger-picture channels). The same result also holds
for bistochastic strictly contractive channels, which are dense in the set of all bistochastic
channels [6]. For such channels theorem 2 may be used to estimate the rate at which entropy
is produced in the register or in the computer. Such estimates generally serve as a measure
of efficiency of error-correction procedures [17] (note that it was shown in [6] that errors
modelled by strictly contractive channels can be corrected only approximately).
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